ATPase activity associated with the magnesium-protoporphyrin IX chelatase enzyme of Synechocystis PCC6803: evidence for ATP hydrolysis during Mg2+ insertion, and the MgATP-dependent interaction of the ChlI and ChlD subunits.

نویسندگان

  • P E Jensen
  • L C Gibson
  • C N Hunter
چکیده

Insertion of Mg2+ into protoporphyrin IX catalysed by the three-subunit enzyme magnesium-protoporphyrin IX chelatase (Mg chelatase) is thought to be a two-step reaction, consisting of activation followed by Mg2+ chelation. The activation step requires ATP and two of the subunits, ChlI and ChlD (I and D respectively), and it has been speculated that this step results in the formation of an I-D-ATP complex. The subsequent step, in which Mg2+ is inserted into protoporphyrin, also requires ATP and the third subunit, H, in addition to ATP-activated I-D complex. In the present study, we examine the interaction of the I and D subunits of the Mg chelatase from the cyanobacterium Synechocystis PCC 6803. We demonstrate the purification of an I-D complex, and show that ATP and Mg2+ are absolute requirements for the formation of this complex, probably as MgATP. However, ATP may be replaced by the slowly hydrolysable analogue, adenosine 5'-[gamma-thio]triphosphate, and, to a minor extent, by ADP and the non-hydrolysable ATP analogue, adenosine 5'-[beta,gamma-imido]triphosphate, all of which suggests that ATP hydrolysis is not necessary for the formation of the ChlI-ChlD complex. A sensitive continuous assay was used to detect ATPase activity during Mg2+ chelation, and it was found that the maximum rate of ATP hydrolysis coincided with the maximum rate of Mg2+ insertion. The rate of ATP hydrolysis depended on factors that determined the rate of Mg2+ chelation, such as increasing the concentration of the H subunit and the concentration of protoporphyrin. Thus ATP hydrolysis has been identified as an absolute requirement for the chelation step. The I subunit possessed strong ATPase activity when assayed on its own, whereas the D subunit had no detectable activity, and when the I and D subunits were assayed in combination, the ATPase activity of the I subunit was repressed.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Nanomechanical and Thermophoretic Analyses of the Nucleotide-Dependent Interactions between the AAA+ Subunits of Magnesium Chelatase

In chlorophyll biosynthesis, the magnesium chelatase enzyme complex catalyzes the insertion of a Mg(2+) ion into protoporphyrin IX. Prior to this event, two of the three subunits, the AAA(+) proteins ChlI and ChlD, form a ChlID-MgATP complex. We used microscale thermophoresis to directly determine dissociation constants for the I-D subunits from Synechocystis, and to show that the formation of ...

متن کامل

Magnesium-dependent ATPase Activity and Cooperativity of Magnesium Chelatase from Synechocystis sp. PCC6803*□S

The first committed step in chlorophyll biosynthesis is catalyzed by magnesium chelatase, a complex enzyme with at least three substrates, cooperative Mg activation, and free energy coupling between ATP hydrolysis and metal-ion chelation. A detailed functional study of the behavior of the intact magnesium chelatase has been performed, including characterization of magnesium cooperativity and th...

متن کامل

ATPases and phosphate exchange activities in magnesium chelatase subunits of Rhodobacter sphaeroides.

Three separate proteins, BchD, BchH, and BchI, together with ATP, insert magnesium into protoporphyrin IX. An analysis of ATP utilization by the subunits revealed the following: BchH catalyzed ATP hydrolysis at the rate of 0.9 nmol per min per mg of protein. BchI and BchD, tested individually, had no ATPase activity but, when combined, hydrolyzed ATP at the rate of 117.9 nmol/min per mg of prot...

متن کامل

Three semidominant barley mutants with single amino acid substitutions in the smallest magnesium chelatase subunit form defective AAA+ hexamers.

Many enzymes of the bacteriochlorophyll and chlorophyll biosynthesis pathways have been conserved throughout evolution, but the molecular mechanisms of the key steps remain unclear. The magnesium chelatase reaction is one of these steps, and it requires the proteins BchI, BchD, and BchH to catalyze the insertion of Mg(2+) into protoporphyrin IX upon ATP hydrolysis. Structural analyses have show...

متن کامل

Magnesium chelatase from Rhodobacter sphaeroides: initial characterization of the enzyme using purified subunits and evidence for a BchI-BchD complex.

The enzyme magnesium-protoporphyrin IX chelatase (Mg chelatase) catalyses the insertion of Mg into protoporphyrin IX, the first committed step in (bacterio)chlorophyll biosynthesis. In the photosynthetic bacterium Rhodobacter sphaeroides, this reaction is catalysed by the products of the bchI, bchD and bchH genes. These genes have been expressed in Escherichia coli so that the BchI, BchD and Bc...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:
  • The Biochemical journal

دوره 339 ( Pt 1)  شماره 

صفحات  -

تاریخ انتشار 1999